NC State Biochemistry receives state and federal revenues, but these sources represent a fraction of the support required to maintain successful programs and facilities. Your donations will make the difference for our faculty and students to meet the global challenges of 21st Century:

- Enhancing the production, quality, accessibility and proftability of food, plant, animal and bioenergy products for North   Carolina, the nation and the world
- Ensuring environmental stewardship and sustainability of air, land, soil and water resources
- Creating a food supply that is safe, secure, healthy, affordable and of high quality
- Improving human health and well-being for individuals, families and communities and
- Preparing students and stakeholders for leadership and success in the global workforce.


NC State Biochemistry

 

 

Linda K. Hanley-Bowdoin
William Neal Reynolds Professor of Biochemistry

Education:
PhD, Rockefeller University
Postdoctoral, Cornell University
Postdoctoral, Monsanto

Contact:
Office: 362 Partners III, Centennial Campus
Phone:
   Phone: 919.515.6663
Email: Linda K. Hanley-Bowdoin

Linda K. Hanley-Bowdoin

Website: Visit our Lab Home Page

Research Areas: Geminiviruses mechanisms | ssDNA virus resistance | Plant DNA Replication

Geminiviruses are a large family of plant viruses with circular, single-stranded DNA genomes that replicate through double-stranded intermediates. Because of their limited coding capacity, geminiviruses supply only the factors required to initiate viral replication and depend on host DNA polymerases to amplify their genomes. Many geminiviruses replicate in differentiated plant cells that no longer contain detectable levels of host DNA polymerases and associated factors.

Geminiviruses are major impediments to food production in sub-Saharan Africa and south Asia, which together account for more than 60% of the 820M undernourished people worldwide. We are working on peptide aptamers and trans-dominant negative mutants that interfere with viral replication to confer table, general resistance against these important plant pathogens and collaborating with researchers in Africa and Asia to move the technology into key crops.

In eukaryotes, DNA replication begins at specific sites in their genomes designated as origins of replication. Even though origins have been mapped to specific sequences in yeast, it has proven more difficult to define origins in higher eukaryotes. We are collaborating with other scientists to characterize plant origins of replication and to determine their relationships to matrix attachment regions, DNA methylation sites, recruitment of modified histones and transcriptional activity.